27 research outputs found

    Proderm technology: a water- based lipid delivery system for dermatitis that penetrates viable epidermis and has antibacterial effects.

    Get PDF
    BackgroundA defective skin barrier and bacterial colonization are two important factors in maintenance and progression of atopic dermatitis and chronic allergic/irritant hand dermatitis. A water-based lipid delivery system containing physiologic lipids was previously shown to be a useful adjunct in the treatment of hand dermatitis. We tested the ability of this formulation to penetrate into the viable epidermis and in addition assessed its antibacterial properties.MethodsEpidermal penetration of the product was assessed by fluorescence microscopy. Recovery of Escherichia coli and Staphylococcus aureus MRSA from skin treated with Neosalus® foam was quantified.ResultsComponents of Neosalus® penetrated the stratum corneum and were distributed throughout the viable epidermis. Neosalus® significantly decreased recovery of both Staphylococcus aureus and Escherichia coli from the skin surface.ConclusionsThe ability of components of Neosalus® to be taken up into the viable epidermis and potentially made available for incorporation into the barrier lipids, combined with antibacterial properties, indicate that this formulation may be valuable not only in chronic hand dermatitis, but also in various other forms of dermatitis.Trial registrationCurrent Controlled Trials ISRCTN18191379 , 28/12/2018, retrospectively registered

    A new water-based topical carrier with polar skin-lipids

    Get PDF
    A new water-based topical formulation is presented that aims at providing good penetration properties for both lipophilic and hydrophilic drugs with as small a disturbance of the skin barrier function as possible. The formulation contains dispersed lipids in a ratio resembling that of human skin. The capacity to deliver is addressed in this first study while the mild effect on skin will be presented later. Three variations of the lipid formulation were investigated by use of pigskin in vitro diffusion cell. The hydrophilic 5(6)-carboxyfluorescein (CF) and the lipophilic acridine orange 10-nonyl bromide (AO) were used as model drug substances. The results showed that the delivery properties of the new formulation exceeded that of the references (vaseline and xanthan gum gel). The effect was largest for lipophilic AO where all lipid matrix formulations were superior in amount detected in the skin. The results for the hydrophilic CF were also promising. Especially efficient was the lipid formulation containing the non-ionic adjuvants tetra ethylene glycol monododecyl ether and polyoxyethylene 23 dodecyl ether. The additional in vivo study suggests that the used in vitro model has qualitative bearing on relevant in vivo situations

    Decreased Epidermal Lipid Synthesis Accounts for Altered Barrier Function in Aged Mice

    Get PDF
    The epidermis of aged mice displays decreased stratum corneum (SC) lipid content and decreased extracellular bilayers, which result in impaired barrier recovery following the solvent treatment or tape stripping. We assessed the role of altered lipid synthesis as the cause of the abnormal barrier and lipid content in aged epidermis, both under basal conditions and in response to acute barrier perturbations. In aged epidermis (≥18months), synthesis of one of the three key lipid classes (cholesterol) is decreased under basal conditions, and sterologenesis fails to attain the levels reached in young epidermis following comparable acute perturbations. In contrast, fatty acid and sphingolipid synthesis in aged epidermis increase sufficiently to approach the levels attained in stimulated young epidermis. The abnormalities in sterologenesis in aged epidermis are paralleled by a decrease in activity of its rate-limiting enzyme, 3-hydroxy-3-methylglutaryl-coenzyme A reductase, under basal conditions, and enzyme activity also fails to increase as much as in young epidermis after barrier disruption. That defective lipid generation contributes to the barrier defect is shown directly by the ability of either a cholesterol-containing mixture of SC lipids or cholesterol alone to enhance barrier recovery. Finally, lipid-induced acceleration of barrier recovery in aged epidermis correlates with repletion of the extracellular spaces with normal lamellar structures. Thus, a deficiency in lipid synthesis, particularly in cholesterologenesis, accounts for the barrier abnormality in aged epidermis

    25 years of epidermal stem cell research.

    Get PDF
    This is a chronicle of concepts in the field of epidermal stem cell biology and a historic look at their development over time. The past 25 years have seen the evolution of epidermal stem cell science, from first fundamental studies to a sophisticated science. The study of epithelial stem cell biology was aided by the ability to visualize the distribution of stem cells and their progeny through lineage analysis studies. The excellent progress we have made in understanding epidermal stem cell biology is discussed in this article. The challenges we still face in understanding epidermal stem cells include defining molecular markers for stem and progenitor sub-populations, determining the locations and contributions of the different stem cell niches, and mapping regulatory pathways of epidermal stem cell proliferation and differentiation. However, our rapidly evolving understanding of epidermal stem cells has many potential uses that promise to translate into improved patient therapy

    Asthma in the elderly: what we know and what we have yet to know

    Get PDF
    In the past, asthma was considered mainly as a childhood disease. However, asthma is an important cause of morbidity and mortality in the elderly nowadays. In addition, the burden of asthma is more significant in the elderly than in their younger counterparts, particularly with regard to mortality, hospitalization, medical costs or health-related quality of life. Nevertheless, asthma in the elderly is still been underdiagnosed and undertreated. Therefore, it is an imperative task to recognize our current challenges and to set future directions. This project aims to review the current literature and identify unmet needs in the fields of research and practice for asthma in the elderly. This will enable us to find new research directions, propose new therapeutic strategies, and ultimately improve outcomes for elderly people with asthma. There are data to suggest that asthma in older adults is phenotypically different from young patients, with potential impact on the diagnosis, assessment and management in this population. The diagnosis of AIE in older populations relies on the same clinical findings and diagnostic tests used in younger populations, but the interpretation of the clinical data is more difficult. The challenge today is to encourage new research in AIE but to use the existing knowledge we have to make the diagnosis of AIE, educate the patient, develop a therapeutic approach to control the disease, and ultimately provide a better quality of life to our elderly patients

    25 years of epidermal stem cell research.

    No full text

    Feroze N. Ghadially – Polymath Extraordinaire

    No full text

    Genetic priming of sensory neurons in mice that overexpress PAR2 enhances allergen responsiveness.

    No full text
    Pruritus is a common symptom of inflammatory skin conditions, including atopic dermatitis (AD). Although primary sensory neurons that transmit pruritic signals are well-cataloged, little is known about the neuronal alterations that occur as a result of skin disruption in AD. To address this question, we examined the molecular and behavioral consequences of challenging Grhl3 PAR2/+ mice, which overexpress PAR2 in suprabasal keratinocytes, with serial topical application of the environmental allergen house dust mite (HDM). We monitored behavior and used RNA sequencing, qPCR, and in situ hybridization to evaluate gene expression in trigeminal ganglia (TG), before and after HDM. We found that neither Grhl3 PAR2/+ nor wild-type (WT) mice exhibited spontaneous scratching, and pruritogen-induced acute scratching did not differ. In contrast, HDM exacerbated scratching in Grhl3 PAR2/+ mice. Despite the absence of scratching in untreated Grhl3 PAR2/+ mice, several TG genes in these mice were up-regulated compared to WT. HDM treatment of the Grhl3 PAR2/+ mice enhanced up-regulation of this set of genes and induced additional genes, many within the subset of TG neurons that express TRPV1. The same set of genes was up-regulated in HDM-treated Grhl3 PAR2/+ mice that did not scratch, but at lesser magnitude. Finally, we recorded comparable transcriptional changes in IL31Tg mice, demonstrating that a common genetic program is induced in two AD models. Taken together, we conclude that transcriptional changes that occur in primary sensory neurons in dermatitis-susceptible animals underlie a genetic priming that not only sensitizes the animal to chronic allergens but also contributes to pruritus in atopic skin disease
    corecore